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Abstract
Self-reducers are programs that reduce embeddings of ex-
pressions to their normal forms. They are written in the
same language that they reduce. To date, there are no self-
reducers for strongly-normalising languages. I have imple-
mented a fuelled self-reducer for SystemT. Rather thanwork-
ing with Gödel encodings, I used Kiselyov’s [14], and Long-
ley and Normann’s [16] encodings for structured types such
as products, sums and some inductive types. Working with
these typeswithin SystemTproduces large unreadable terms.
I promote these structured types to first class features of a
new metalanguage called Primrose. Primrose compiles into
System T. Work on Primrose is ongoing.
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1 Introduction
Self-reduction is a partial evaluation technique with a long
history. A reducer r is a program that given an embedding
of a source term, computes the normal form of its input. For
a given definition of normal form, the reduction equation
states that a reducer r when applied to the embedding of a
term e reduces to the embedding of the normal form of e:

r ⌜e⌝ ⇝∗ ⌜nf (e)⌝
A reducer is a self-reducer when the program r is written in
the language that r reduces.

Many self-reducers have been implemented over the last
fourty years. Jones et al. [13] implemented the first self-applicable
self-reducer. Berarducci and Böhm [3] implemented a self-
reducer for the untyped 𝜆-calculus. Launchbury [15] imple-
mented one for the simply-typed second-order language LML,
and Naylor [19] for a subset of Haskell. These languages
all feature general recursion, and include non-normalising
terms.

Bauer [2] provided a lower bound on the recursive power
needed to express a self reducer:
PEPM ’25, January 21, 2025, Denver, CO, USA
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Theorem 1.1. There are no self-reducers in System T for beta
normal forms that embed terms using Gödel encodings.

As there are no general self-reducers for System T, I inves-
tigate fuelled self-reducers. These are self-reducers with an
additional fuel parameter, which is a natural number giving
an upper bound on the amount of work necessary. Given a
fuel function 𝐹 calculating the amount of fuel required we
can write the fuelled reducer equation:

∀𝑘 ≥ 𝐹 (e).r 𝑘 ⌜e⌝ ⇝∗ ⌜nf (e)⌝
If there exists a System T program f that computes an up-
per bound for a fuel function, then there cannot exist a fu-
elled self-reducer. If such a reducer r did exist one could
construct a general self-reducer by computing 𝜆𝑥.r (f 𝑥) 𝑥
which contradicts Bauer’s theorem. Taking the contraposi-
tive gives the following theorem
Theorem 1.2. If there exists a fuelled self-reducer rwith fuel
function 𝐹 , there is no System T program to compute an upper
bound of 𝐹 e from the Gödel encoding of e.

One of my contributions is the construction of such a fu-
elled self-reducer for System T, using the number of reduc-
tion steps as the amount of fuel. I initially tried to work di-
rectly with Gödel encodings of terms, but I found this diffi-
cult. Instead I used work by Kiselyov [14] and Longley and
Normann [16] to encode products, sums and finitary posi-
tive inductive types within System T. As these type encod-
ings are also complex, I used Idris 2 [5] as ameta language to
help construct the term.The final term is large; a condensed
version is 336 kibibytes. Compare this to the Idris program
generating it, which is 75 kibibytes split over several files.
To overcome size issues and the complexity of encoding

types within System T, I have promoted them to first-class
features in a new meta-language called Primrose. Primrose
corresponds to the simply-typed 𝜆-calculus extended with
products, sums and finitary positive inductive types. I present
its type system and a translation from Primrose into Sys-
tem T.Work on Primrose is ongoing, with the intent to write
the translation to System T as a Primrose program andwrite
a fuelled self-reducer. Combining these two programs will
allow for a new, hopefully simpler self-reduction algorithm
for System T.
Outline: in section 2 I formally define self-reducers and

fuelled self-reducers for strongly-typed languages. I intro-
duce the syntax and type system of Primrose in section 3. I
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𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴 Γ ⊢ 0 : nat

Γ ⊢ 𝑡 : nat
Γ ⊢ suc 𝑡 : nat

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐴 → 𝐴 Γ ⊢ 𝑣 : nat
Γ ⊢ primrec 𝑡 𝑢 𝑣 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴 → 𝐵

Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑡 : 𝐴
Γ ⊢ 𝑓 𝑡 : 𝐵

Figure 1. Definition of System T

define a translation function from Primrose into System T in
section 3.1. In section 3.2 I describe my plans for the future
of Primrose. I conclude with a discussion on related work in
section 4.

Contributions:
• report about an ongoing implementation of the meta-
language Primrose for working with System T more
ergonomically.

• constructed an explicit fuelled self-reducer in SystemT.

2 Strongly-Typed Self-Reducers
Self-reducers are programs that manipuate embeddings of
programs. The details of how they function depend on the
details of the embedding. For a simply-typed language, one
needs to choose both a type representing embedded values
and a function converting programs to that type.
Definition 2.1. A language consists of:

• a set Ty of types;
• a type operation→: Ty×Ty → Ty for function types;
• a Ty-indexed set Tm (−) of terms of a given type;
• a term operation $ : Tm (𝐴 → 𝐵)×Tm (𝐴) → Tm (𝐵)
for function applications;

• aTy-indexed reduction relation⇝𝐴⊆ Tm (𝐴)×Tm (𝐴);
• aTy-indexed partial functionnf𝐴 : Tm (𝐴) ⇀ Tm (𝐴)
specifying the normal form of a term, when it exists.

I write ⇝∗ as the transitive closure of ⇝.
I will elide the type annotations on⇝∗ and nf . I will also

write an application 𝑓 $ 𝑥 as justaposition 𝑓 𝑥 . When talk-
ing about multiple languages, I will use superscripts on Ty
and Tm to distinguish between the languages.
This definition of languages is compatible with untyped

languages, by taking Ty = {★} and ★→ ★≔ ★.
Example 2.2. System T is the language consisting of types
of the form Ty F nat | Ty → Ty. Members of Tm (𝐴) are
terms 𝑡 such that the judgement ⊢ 𝑡 : 𝐴 from fig. 1 holds.
Take⇝ to be beta-reduction, and nf to beta normal forms.

Languages are capable of embedding terms of another.
This is commonly called ‘quoting’ the term [2, 15, 8].
Definition 2.3. A quotation function of an object language
𝑂 into a meta language𝑀 consists of:

𝔤(𝑥) ≔ 20 · 3𝑥
𝔤(0) ≔ 21

𝔤(suc) ≔ 22

𝔤(rec 𝑧 𝑠 𝑛) ≔ 23 · 3𝔤(𝑧 ) · 5𝔤(𝑠 ) · 7𝔤(𝑛)
𝔤(𝜆𝑥 .𝑡) ≔ 24 · 3𝔤(𝑡 )
𝔤(𝑓 𝑡) ≔ 25 · 3𝔤(𝑓 ) · 5𝔤(𝑡 )

Figure 2. A Gödel encoding of System T terms, assuming
variables are using de Bruijn indices.

• a meta type 𝐸 ∈ Ty𝑀 of program codes;
• for all object types 𝐴 ∈ Ty𝑂 a function

⌜−⌝𝐴 : Tm𝑂 (𝐴) → Tm𝑀 (𝐸)

A self-quotation function is a quotation function where the
object and meta languages are equal.

Note that a quotation function need not be computable
nor injective. Also notice that not all meta terms of type 𝐸
need to represent well-typed object terms.

Example 2.4. Here are three self-quotation functions for
System T, choosing 𝐸 to be nat:

1. the constant function ⌜e⌝𝐴 ≔ 0;
2. the Gödel encoding ⌜e⌝𝐴 ≔ 𝔤(e);
3. theGödel encoding of normal forms ⌜e⌝𝐴 ≔ 𝔤(nf (e)).

The first of these functions forgets everything about the
term. The second uses the Gödel encoding, defined in fig. 2,
to represent the term as an abstract syntax tree. The third
forgets the original term, instead embedding its normal form.
Some choices of quotation functions are more useful than
others.

Definition 2.5. A reducer relative to quotation function ⌜−⌝
from 𝑂 to 𝑀 is an Ty𝑂 -indexed family of meta terms r𝐴 :
Tm𝑀 (𝐸 → 𝐸) such that for any object term e ∈ Tm𝑂 (𝐴)
the reduction

r𝐴 ⌜e⌝𝐴 ⇝∗ ⌜nf (e)⌝𝐴 (1)

holds whenever the normal form nf (e) exists.
A self-reducer is a reducer where the object language and

meta language are the same.

Notice that a reducer is a family of programs. This is im-
portant for typed object languages whose normal forms are
eta-long. The behaviour of a reducer is unspecified when
applied to object terms without a normal form. A common
design goal is to ensure that a reducer terminates for all ob-
ject terms.

Example 2.6. The identity function 𝜆𝑥 .𝑥 is a self-reducer
for quotation functions 1 and 3 of example 2.4 asnf (nf (e)) =
nf (e) for all terms e.

2
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Bauer [2] proved theorem 1.1 regarding the non-existence
of self-reducers for System T. The proof relies on being able
to construct terms that compute:

• the Gödel encoding of a natural number;
• a natural number from its Gödel encoding;
• the encoding of applying two terms together.

From this one can construct a fixed point for every term
of type nat → nat. As the successor function has no fixed
point, this is a contradiction.

Adding fuel to a reducer can prevent encoding applica-
tions, circumventing this impossibility result.

Definition 2.7. A fuelled reducer for quotation function
⌜−⌝ from𝑂 to𝑀 and a fuel functions 𝐹𝐴 : Tm𝑂 (𝐴) → N is
anTy𝑂 -indexed family ofmeta terms r𝐴 : Tm𝑀 (nat → 𝐸 → 𝐸)
such that for any object term e ∈ Tm𝑂 (𝐴) the reductions

∀𝑘 ≥ 𝐹𝐴 (e).r𝐴 𝑘 ⌜e⌝𝐴 ⇝∗ ⌜nf (e)⌝𝐴 (2)

hold whenever the normal form nf (e) exists.
A fuelled self-reducer is a fuelled reducer where the ob-

ject language and meta language are the same.

Fuel is an additional parameter given to an iterative pro-
cess describing an upper bound on the number of steps to
reach the final value. Adding fuel overcomes the restrictions
of theorem 1.1. To adapt Bauer’s impossibility proof to a fu-
elled reducer, one must be able to calculate the fuel required
to reduce an application. As fuelled self-reducers exist for
System T, it suggests the fuel needed to reduce an applica-
tion cannot be computed.

The inequality in eq. (2) helps to prevent ‘cheating’. With-
out it, one could smuggle a complete computation through
the fuel function. For example, for the fuel function 𝐹𝐴 (e) ≔
𝔤(nf (e)), the program r 𝑘 𝑥 ≔ 𝑘 would satisfy this weaker
definition.

3 Primrose
Encoding complex types into SystemT results in large terms
that are impossible to read. I introduce a new language, Prim-
rose, to act as a new metalanguage for System T. By design,
any Primrose term can be compiled into a well-typed Sys-
tem T term.

Primrose is the simply-typed 𝜆-calculus extended with
sums, products and finitary positive inductive types. The
syntax is shown in fig. 6 and fig. 7 shows the typing rules.
Primrose has two typing judgements:

• 𝐴 finpos 𝑋 checks all uses of 𝑋 within 𝐴 are finitary
positive;

• Γ ⊢ 𝑡 : 𝐴 checks term 𝑡 at type 𝐴 under context Γ;
The finpos judgement is related to the encoding of induc-

tive types within System T. I will provide more commentary
when describing the translation of Primrose into System T
later. The other typing rules are standard.

let 𝑥 = 𝑒 in 𝑡 ⇝ 𝑡 [𝑥/𝑒]
(𝜆𝑥.𝑡) 𝑢 ⇝ 𝑡 [𝑥/𝑢]

⟨𝐿1 : 𝑡1, . . . , 𝐿𝑛 : 𝑡𝑛⟩.𝐿𝑖 ⇝ 𝑡𝑖

case 𝐿𝑖 𝑡 of
{𝐿1 𝑥1 ⇒ 𝑡1; . . . ;𝐿𝑛 𝑥𝑛 ⇒ 𝑡𝑛}

⇝ 𝑡𝑖 [𝑥𝑖/𝑡]

!(∼𝑡) ⇝ 𝑡

fold ∼𝑡 as 𝑥 by 𝑢 ⇝

𝑢 [𝑥/unroll (map (𝑦 ↦→ fold 𝑦 as 𝑥 by 𝑢) (roll 𝑡))]

Figure 3. Primrose reduction rules.Themap, roll, and unroll
functions are described later.

The reduction relation for Primrose terms is shown in
fig. 3. The most interesting case is fold. First, map is a meta-
function that performs the fold recursively on all appropri-
ate subterms of 𝑡 . This value is then substituted into the ac-
cumulator 𝑢. I will provide an inductive definition for map
later.

3.1 Translation into System T
By design, all Primrose types can be translated into Sys-
tem T types. I will use type encodings by Kiselyov [14] and
Longley and Normann [16] to perform the translation.
System T has only two type formers: nat and function ar-

rows. As nat is inhabited, all System T types are inhabited;
for function types, use a constant function returning an ar-
bitrary value. I will denote arbitrary inhabitants with the
constant arb.

This allows System T to express the untagged union of
any two types like the union construct in C. Given two types
𝐴 and 𝐵, the union type𝐴⊔𝐵 has four operations satisfying
two equations:

inl : 𝐴 → 𝐴 ⊔ 𝐵 inr : 𝐵 → 𝐴 ⊔ 𝐵
prl : 𝐴 ⊔ 𝐵 → 𝐴 prr : 𝐴 ⊔ 𝐵 → 𝐵
prl (inl 𝑥) =𝛽,𝜂 𝑥 prr (inr 𝑦) =𝛽,𝜂 𝑦

I give the full definitions of 𝐴 ⊔ 𝐵, inl and prl in fig. 4. The
definition proceeds by recursion on the types 𝐴 and 𝐵. inr
and prr are defined symmetrically.

Example 3.1. The union of types 𝐴0 and 𝐵0

𝐴0 ≔ (nat → nat) → nat → nat
𝐵0 = nat → nat

is the type 𝐴0 ⊔ 𝐵0 = (nat → nat) → nat → nat. The left
injection and projection are both identity functions. A func-
tion 𝑓 of type𝐵0 is right-injected to the function 𝜆𝑔, 𝑥 .𝑓 (𝑔 arbnat).
An encoding ℎ of type 𝐴0 ⊔ 𝐵0 is right-projected into the
function 𝜆𝑥 .ℎ (𝜆𝑦.𝑥) arbnat.

Union types are essential for defining a translation of Prim-
rose into System T. Another useful type are lists. A list of

3
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nat ⊔ nat ≔ nat
(𝐴 → 𝐵) ⊔ nat ≔ 𝐴 → 𝐵 ⊔ nat
nat ⊔ (𝐴 → 𝐵) ≔ 𝐴 → nat ⊔ 𝐵

(𝐴 → 𝐵) ⊔ (𝐶 → 𝐷) ≔ 𝐴 ⊔𝐶 → 𝐵 ⊔ 𝐷

inlnat,nat ≔ 𝜆𝑛.𝑛

inl𝐴→𝐵,nat ≔ 𝜆𝑓 , 𝑥 .inl𝐵,nat (𝑓 𝑥)
inlnat,𝐴→𝐵 ≔ 𝜆𝑛, 𝑥 .inlnat,𝐵 𝑛

inl𝐴→𝐵,𝐶→𝐷 ≔ 𝜆𝑓 , 𝑥 .inl𝐵,𝐷 (𝑓 (prl𝐴,𝐶 𝑥))

prlnat,nat ≔ 𝜆𝑛.𝑛

prl𝐴→𝐵,nat ≔ 𝜆𝑓 , 𝑥 .prl𝐵,nat (𝑓 𝑥)
prlnat,𝐴→𝐵 ≔ 𝜆𝑓 .prlnat,𝐵 arb𝐴

prl𝐴→𝐵,𝐶→𝐷 ≔ 𝜆𝑓 , 𝑥 .prl𝐵,𝐷 (𝑓 (inl𝐴,𝐶 𝑥))

Figure 4. Encoding of union types in System T.

type 𝐴 is represented by a function from positions to val-
ues: 𝐴∗ ≔ nat → 𝐴. Item lookup is performed by calling
this function with the index to search. Constructing the list
is more involved, with the constructors nil and cons defined
as follows.

nil ≔ 𝜆𝑥 .arb
cons ≔ 𝜆𝑣, 𝑓 , 𝑖 .primrec 𝑣 (𝜆𝑥 .𝑓 (pred 𝑖)) 𝑖

The empty list contains arbitrary data at all positions.The
cons operation uses primrec to test whether to return the
head of the list or a value from the tail.

I will write statements of the form [𝑥 ;𝑦; 𝑧] as syntactic
sugar for lists.

For the remainder of this section, I will construct a pair
of functions translating closed types and open terms from
Primrose to System T, both called ⟦−⟧.
I use Kiselyov’s [14] encoding of product types to trans-

late Primrose products into System T types.

⟦⟨𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛⟩⟧ ≔

(
𝑛⊔
𝑖=1

⟦𝐴𝑖⟧
)∗

⟦⟨𝐿1 : 𝑡1, . . . , 𝐿𝑛 : 𝑡𝑛⟩⟧ ≔ [in1 ⟦𝑡1⟧, . . . , in𝑛 ⟦𝑡𝑛⟧]
⟦𝑒.𝐿𝑖⟧ ≔ pr𝑖 (⟦𝑒⟧ 𝑖)

Products are represented as a heterogeneous list. I use union
types so that each element is represented in a uniform way.
The tupling operation stores the components of the product
in a list, after injecting each component into the union. The
projection operation looks up the component from the list,
and then projects it to the correct type.

I will write𝐴×𝐵 for the product of two arbitrary SystemT
types, with tupling operation ⟨−,−⟩ and projections fst and
snd, defined similarly to above. I will also allow pattern-
matching expressions within System T, such as let ⟨𝑥,𝑦⟩ =
𝑝 in 𝑡 .

Kiselyov [14] also gives an encoding of sum types.

⟦{𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛}⟧ ≔ nat ×
𝑛⊔
𝑖=1

⟦𝐴𝑖⟧

⟦𝐿𝑖 𝑡⟧ ≔ ⟨𝑖, in𝑖 ⟦𝑡⟧⟩⟦
case 𝑒 of
{𝐿1 𝑥1 ⇒ 𝑡1; . . . 𝐿𝑛 𝑥𝑛 ⇒ 𝑡𝑛}

⟧
≔ let ⟨𝑖, 𝑣⟩ = ⟦𝑒⟧ in

[ let 𝑥1 = pr1 𝑣 in⟦𝑡1⟧
; . . .
; let 𝑥𝑛 = pr𝑛 𝑣 in⟦𝑡𝑛⟧
] (pred 𝑖)

Sums are represented as tagged unions.The first component
of the pair identifies which case of the union the value occu-
pies. The second stores the value itself. The case expression
uses a list to compute the value of each branch.The tag then
selects the appropriate branch.
The final type constructor to translate into System T are

inductive types. Longley and Normann [16, prop 4.2.12] de-
scribes a general strategy for encoding finitary positive types
within System T. This is exactly the set of types that satisfy
finpos.

Definition 3.2. A finitary positive container type is a list
of pairs made of a Primrose type and a natural number.

Containers are a normal form for the inductive types that
Primrose can operate on. A container has a number of con-
structors, each consisting of an arbitrary type for data and
a finite number of children. One can fill a container type
𝐹 = (𝐴𝑖 , 𝑛𝑖 )1≤𝑖≤𝑘 with a type 𝐵. We define this filling

𝐹 𝐵 ≔
𝑘∑
𝑖=1

𝐴𝑖 × 𝐵𝑛𝑖

Containers are endofunctors on types. I define the map
operation on a container as follows, where 𝑓 𝑘 : 𝐴𝑘 → 𝐵𝑘 is
the action of the (−)𝑘 functor.

map : (𝐴 → 𝐵) → 𝐹 𝐴 → 𝐹 𝐵

map 𝑓 𝑥 ≔ case 𝑥 of {𝐿𝑖 𝑝 ⇒ ⟨fst 𝑝, 𝑓 𝑛𝑖 (snd 𝑝)⟩}

I define a second utility function called getChildren. Given
a filled container, this empties the filling into a list, replac-
ing each filled value with its index into the list. The value
𝑛𝑖 is the number of filled values for case 𝑖 , and iota𝑘 is the
tuple 0, . . . , 𝑘 − 1.

getChildren : 𝐹 𝐴 → nat ×𝐴∗ × 𝐹 nat
getChildren 𝑥 ≔ case 𝑥 of {𝐿𝑖 𝑝 ⇒ ⟨𝑛𝑖 , snd 𝑝, ⟨fst 𝑝, iota𝑛𝑖 ⟩}
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Definition 3.3. Two Primrose types𝐴 and𝐵 are isomorphic
when there are Primrose terms ⊢ 𝑓 : 𝐴 → 𝐵 and ⊢ 𝑓 −1 :
𝐵 → 𝐴 such that

(𝜆𝑥.𝑓 −1 (𝑓 𝑥)) =𝛽𝜂 (𝜆𝑥.𝑥)
(𝜆𝑦.𝑓 (𝑓 −1 𝑦)) =𝛽𝜂 (𝜆𝑦.𝑦)

Type isomorphisms describe when two types contain the
same amount of information. I use isomorphisms to convert
finite positive types into containers.

Lemma 3.4. Whenever𝐴 finpos𝑋 there exists a container𝐴
such that𝐴𝑋 is isomorphic to𝐴. Denote the forward direction
from 𝐴 𝑋 to 𝐴 as unroll and the reverse as roll.

This lemma is what defines the structure of finpos. The
type variable 𝑋 cannot appear on either side of a function
arrow, because there is no guarantee the type will be iso-
morphic to a container. Similarly 𝑋 cannot be used within
other inductive types, as the inductive type could mean that
a constructor can use 𝑋 a variable number of times.

Example 3.5. Consider the type of binary trees, where all
leaves and internal nodes are tagged with a natural.

𝑇 ≔ 𝜇𝑋 .⟨D : nat, S : {L : ⟨⟩, B : ⟨L : 𝑋, R : 𝑋 ⟩}⟩
This type has the corresponding container𝑇 ≔ [(nat, 0), (nat, 2)].
The first case corresponds to leaves, and the second case cor-
responds to branches.

Container types provide enough structure to use Longley
and Normann’s [16] encoding for finitary positive inductive
types.

⟦𝜇𝑋 .𝐴⟧ ≔ nat × nat × ⟦𝐴 nat⟧∗

⟦∼𝑡⟧ ≔ let ⟨𝑘, 𝑐𝑠, 𝑡 ′⟩ = getChildren (roll ⟦𝑡⟧) in
let offset = 𝜆𝑖, 𝑥 .1 + 𝑖 + 𝑘 ∗ 𝑥 in
⟨ 1 + fst (primrec
⟨0, 0⟩
(𝜆⟨𝑥, 𝑖⟩.⟨max 𝑥 (depth (𝑐𝑠 𝑖)), 1 + 𝑖⟩)
𝑘)

, 0
, cons (map (𝜆𝑖.offset 𝑖 (root (𝑐𝑠 𝑖))) 𝑡 ′)

(𝜆𝑛.
let ⟨𝑞, 𝑟 ⟩ = divmod 𝑛 𝑘 in
map (offset 𝑟 ) (heap (𝑐𝑠 𝑟 ) 𝑞))

⟩
⟦!𝑡⟧ ≔ let ⟨𝑑, 𝑟, ℎ⟩ = ⟦𝑡⟧ in

unroll (map (𝜆𝑖.⟨𝑑, 𝑖, ℎ⟩) (ℎ 𝑟 ))
⟦fold 𝑒 as 𝑥 by 𝑡⟧ ≔ let ⟨𝑑, 𝑟, ℎ⟩ = ⟦𝑒⟧ in

primrec
(𝜆𝑖.arb)
(𝜆𝑓 , 𝑖 .

let 𝑥 = unroll (map 𝑓 (ℎ 𝑖)) in
⟦𝑡⟧)

𝑑 𝑟

Inductive types are encoded as a triple. The last compo-
nent of the triple acts as a heap. Every entry stores a con-
structor, a value of that constructor’s data, and a pointer
for each of its children. By construction, the heap cannot be
cyclic, thus it stores a tree. The first component is an upper
bound on the depth of the tree.The second indicates the root
node of this tree.
The roll operation is most complex.The operation merges

the heaps of all the recursive terms together, and then adds
an extra entry for the new root. The heaps are merged to-
gether by striping; assuming 𝑘 children, the first child heap
occupies indices 1 + 𝑘 ∗ 𝑖 , the second 2 + 𝑘 ∗ 𝑖 and so on.

In detail, it finds the recursive components of the input
value using getChildren. It then defines a helper function
offset which calculates the new heap indices for child 𝑖 . The
depth of the returned tree is the maximum depth of all chil-
dren, plus one for the additional level of indirection. The
new root is at index 0 which is the front of the heap. The
root of the new heap updates the result of getChildren so
each pointer refers to the root of the child tree. The rest
of the heap uses divmod to calculate which child and what
heap entry to access—the remainder is the child and the quo-
tient the index. Applying offset to all pointers in that value
updates the pointers to access the new heap.
The unroll operation is straightforward thanks to storing

the root of the tree. For every pointer it takes a copy of the
initial tree and replaces the root with that pointer.
The fold operation works across the whole heap in paral-

lel. First an arbitrary map of values is created. Then for each
layer in the tree it replaces all the pointers into the heapwith
values from the last layer’s valuemap, and then it applies the
accumulator expression. Iterating on the depth stored with
the heap ensures that every layer has been reduced.

Example 3.6. Continuing example 3.5, we calculate
⟦𝑇⟧ = nat × nat × (nat → (nat × ⟨⟩) + (nat × ⟨nat, nat⟩))
Figure 5 contains both the diagram of a tree and a box-

and-pointer representation of its encoded value.

Trees stored with this encoding are restricted to a con-
stant number of children for each type of node. I believe
it possible to allow trees with nodes that can have a vari-
able but finite number of children.Thiswould require chang-
ing the definitions for container, map, getChildren, roll and
unroll.The details of this encoding have not been fullyworked
out. In the Primrose type system, allowing these branching
structures would amount to modifying the finpos condition
for inductive types. Instead of rejecting occurrences of the
variable inside of an inductive type, it would require occur-
rences to be finpos too.

3.2 Future Work
Work on Primrose is ongoing, and there aremany important
theoretical and practical issues to address. One problem is
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Figure 5. Representation of a tree (left) and its System T encoding (right)

proving that the translation into System T preserves reduc-
tion. Longley and Normann [16] only give a sketch of why
their encoding of inductive types works, whilt the reduction
rules for unions only hold when considering System T with
eta conversion for functions.

Another challenge is to convertmy existing SystemT self-
reducer into a Primrose program. As a dependently typed
language, Idris guarantees that my existing term is well-
typed. However, Idris also has polymorphism, allowing me
to reuse several definitions. As Primrose is only simply typed,
this could lead to a lot of duplicated code. Alternatively, I
could investigate extending Primrose with prenex polymor-
phism as in Standard ML.

A practical issue whilst working with Primrose is that
there is currently no interpreter, making testing programs
impossible. I have written a type checker for Primrose in
Idris, but inductive types interact poorlywith Idris’s require-
ment that all programs terminate. One potential workaround
I have is to compile Primrose into Scheme.

As a final test of the practicality of Primrose, I intend to
write a fuelled self-reducer. As Primrose embeds System T,
there is a Primrose program converting System T terms into
Primrose terms. The translation function also acts via struc-
tural induction, so in theory it may be possible to write this
in Primrose too. Composing these three programs, I can take
a System T term, convert it to Primrose, reduce it, and then
translate it back to System T. Thus I could have a second
self-reducer for System T. This could be compared with my
existing self-reducer.

4 Related Work
Self-reducers. Table 1 lists self-reducers for a number of
systems.They have different type systems and recursive power.
Whilst they use different quotation functions, each embeds
terms as some form of abstract syntax tree.

The results in the 80’s and early 90’s focus on establishing
self-reducers for practical languages [13, 10, 4, 15]. In par-
allel, Mogensen [18], and Berarducci and Böhm [3] worked
on self-reducers for the 𝜆-calculus; the first self-reducers for
languages with first-class functions.

There has recently been a series of papers on interpreters
and reducers for moreminimal strongly-typed languages by

Brown and Palsberg [8, 6, 9, 7]. They use a calculus dubbed
F𝜇𝑖𝜔 , consisting of System F with type-level functions, iso-
recursive types, and intensional type functions.The language
is Turing complete.
TypedRepresentation.Mydefinition of quotation func-

tion (definition 2.3) uses an untyped representation of terms.
All terms of the object language are embedded into the same
meta type 𝐸. It also allows for values representing ill-typed
terms, and possibly even values representing no term at all.
An alternative is typed representation. Instead of a single

meta type for program codes, there is a Ty𝑂 -indexed-family
𝐸 (−) : Ty𝑂 → Ty𝑀 of types for program codes. Using mul-
tiple types, one can enforce that all values of type 𝐸 (𝐴) rep-
resent object terms in Tm𝑂 (𝐴). This approach is used by
Brown and Palsberg [8, 6, 9, 7] to define their self-reducers
and self-evaluators.
Self-Evaluators. Both self-reducers and self-evaluators

are colloquially known as self-interpreters. Consider the def-
inition of a self-evaluator:

Definition 4.1. A self-evaluator relative to a quotation func-
tion ⌜−⌝ is a type-indexed family of programs u𝐴 : Tm (𝐸 → 𝐴)
such that for all terms e ∈ Tm (𝐴)

u𝐴 ⌜e⌝ ⇝∗ nf (e)
A self-evaluator (u for unquote) takes embeddings of terms

and behaves the same as the original term.Many self-reducers
implement self-evaluators [15, 18, 12, 7].
Many programming languages also contain self-evaluators

as primitive operations. This includes JavaScript, Scheme
and Python among others.
Conversion for dependent type theories.Currentwork

on dependent type theory asks whether conversion check-
ing is computable within a dependently-typed language [1].
Conversion checking often involves reducing terms to head-
normal form; this can be extended to reduce terms to beta-
normal form. Brown and Palsberg [8] constructed a self-
reducer for System U, an inconsistent dependently-typed
calculus. It is an open problem if a consistent dependently-
typed language has a self-reducer.
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A Additional Figures

𝐴, 𝐵 F types
𝑋 variables
| 𝐴 → 𝐵 functions
| ⟨𝐿 : 𝐴, . . . , 𝐿 : 𝐴⟩ products
| {𝐿 : 𝐴, . . . , 𝐿 : 𝐴} sums
| 𝜇𝑋 .𝐴 inductive types

𝑒, 𝑓 , 𝑡, 𝑢 F terms
𝑥 variables
| let 𝑥 = 𝑒 in 𝑡 let bindings
| 𝜆𝑥.𝑡 abstraction
| 𝑓 𝑡 application
| ⟨𝐿 : 𝑡, . . . , 𝐿 : 𝑡⟩ tuples
| 𝑒.𝐿 projection
| 𝐿 𝑡 injection

|
case 𝑒 of
{𝐿 𝑥 ⇒ 𝑡 ; . . . ;𝐿 𝑥 ⇒ 𝑡} case splitting

| ∼𝑡 rolling
| !𝑒 unrolling
| fold 𝑒 as 𝑥 by 𝑡 folding

Figure 6. Syntax of Primrose
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𝑋 finpos 𝑋
𝑋 ∉ FV(𝐴) 𝑋 ∉ FV(𝐵)

𝐴 → 𝐵 finpos 𝑋
𝐴𝑖 finpos 𝑋

⟨𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛⟩ finpos 𝑋
𝐴𝑖 finpos 𝑋

{𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛} finpos 𝑋
𝑋 ∉ FV(𝐴)

𝜇𝑌 .𝐴 finpos 𝑋

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴 → 𝐵

Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑡 : 𝐴
Γ ⊢ 𝑓 𝑡 : 𝐵

Γ ⊢ 𝑒 : 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ let 𝑥 = 𝑒 in 𝑡 : 𝐵

Γ ⊢ 𝑒 : ⟨𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛⟩
Γ ⊢ 𝑒.𝐿𝑖 : 𝐴𝑖

Γ ⊢ 𝑡𝑖 : 𝐴𝑖

Γ ⊢ ⟨𝐿1 : 𝑡1, . . . , 𝐿𝑛 : 𝑡𝑛⟩ : ⟨𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛⟩

Γ ⊢ 𝑡 : 𝐴𝑖

Γ ⊢ 𝐿𝑖 𝑡 : {𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛}
Γ ⊢ 𝑒 : {𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛} Γ, 𝑥𝑖 : 𝐴𝑖 ⊢ 𝑡𝑖 : 𝐵
Γ ⊢ case 𝑒 of {𝐿1 𝑥1 ⇒ 𝑡1; . . . ;𝐿𝑛 𝑥𝑛 ⇒ 𝑡𝑛} : 𝐵

Γ ⊢ 𝑡 : 𝐴[𝑋/𝜇𝑋 .𝐴] 𝐴 finpos 𝑋
Γ ⊢ ∼𝑡 : 𝜇𝑋 .𝐴

Γ ⊢ 𝑒 : 𝜇𝑋 .𝐴 𝐴 finpos 𝑋
Γ ⊢ !𝑒 : 𝐴[𝑋/𝜇𝑋 .𝐴]

Γ ⊢ 𝑒 : 𝜇𝑋 .𝐴 Γ, 𝑥 : 𝐴[𝑋/𝐵] ⊢ 𝑡 : 𝐵 𝐴 finpos 𝑋
Γ ⊢ fold 𝑒 as 𝑥 by 𝑡 : 𝐵

Figure 7. Typing rules of Primrose

Table 1. A taxonomy for self-reducers

System Year Type Complexity Functions Recursive Power Fuelled
Jones et al. [13] 1985 Untyped Second Class General No
Fuller and Abramsky [10] 1988 Untyped Second Class General No
Bondorf [4] 1989 Untyped Second Class General No
Launchbury [15] 1991 Simple Second Class General No
Mogensen [18] 1992 Untyped First Class General No
Berarducci and Böhm [3] 1992 Untyped First Class General No
Makholm [17] 2000 Simple Second Class General No
Naylor [19] 2008 Polymorphic First Class General No
Jay and Palsberg [11] 2011 Polymorphic First Class General No
Brown and Palsberg [9] 2017 Polymorphic First Class General No
Brown and Palsberg [7] 2018 Polymorphic First Class General No
This work 2024 Simple First Class Bounded Yes
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