
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

A Fuelled Self-Reducer for System T via Primrose
(Short Paper)

Greg Brown
University of Edinburgh

Edinburgh, UK
greg.brown01@ed.ac.uk

Abstract
Self-reducers are programs that reduce embeddings of ex-
pressions to their normal forms. They are written in the
same language that they reduce. To date, there are no self-
reducers for strongly-normalising languages. I have imple-
mented a fuelled self-reducer for SystemT. Rather thanwork-
ing with Gödel encodings, I used Kiselyov’s [14], and Long-
ley and Normann’s [16] encodings for structured types such
as products, sums and some inductive types. Working with
these typeswithin SystemTproduces large unreadable terms.
I promote these structured types to first class features of a
new metalanguage called Primrose. Primrose compiles into
System T. Work on Primrose is ongoing.

Keywords: partial evaluation, primitive recursion, self-reducer
ACM Reference Format:
Greg Brown. 2024. A Fuelled Self-Reducer for System T via Prim-
rose (Short Paper). In Proceedings of Partial Evaluation and Pro-
gram Manipuation (PEPM ’25). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Self-reduction is a partial evaluation technique with a long
history. A reducer r is a program that given an embedding
of a source term, computes the normal form of its input. For
a given definition of normal form, the reduction equation
states that a reducer r when applied to the embedding of a
term e reduces to the embedding of the normal form of e:

r ⌜e⌝ ⇝∗ ⌜nf (e)⌝
A reducer is a self-reducer when the program r is written in
the language that r reduces.

Many self-reducers have been implemented over the last
fourty years. Jones et al. [13] implemented the first self-applicable
self-reducer. Berarducci and Böhm [3] implemented a self-
reducer for the untyped 𝜆-calculus. Launchbury [15] imple-
mented one for the simply-typed second-order language LML,
and Naylor [19] for a subset of Haskell. These languages
all feature general recursion, and include non-normalising
terms.

Bauer [2] provided a lower bound on the recursive power
needed to express a self reducer:
PEPM ’25, January 21, 2025, Denver, CO, USA
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Theorem 1.1. There are no self-reducers in System T for beta
normal forms that embed terms using Gödel encodings.

As there are no general self-reducers for System T, I inves-
tigate fuelled self-reducers. These are self-reducers with an
additional fuel parameter, which is a natural number giving
an upper bound on the amount of work necessary. Given a
fuel function 𝐹 calculating the amount of fuel required we
can write the fuelled reducer equation:

∀𝑘 ≥ 𝐹 (e).r 𝑘 ⌜e⌝ ⇝∗ ⌜nf (e)⌝
If there exists a System T program f that computes an up-
per bound for a fuel function, then there cannot exist a fu-
elled self-reducer. If such a reducer r did exist one could
construct a general self-reducer by computing 𝜆𝑥.r (f 𝑥) 𝑥
which contradicts Bauer’s theorem. Taking the contraposi-
tive gives the following theorem
Theorem 1.2. If there exists a fuelled self-reducer rwith fuel
function 𝐹 , there is no System T program to compute an upper
bound of 𝐹 e from the Gödel encoding of e.

One of my contributions is the construction of such a fu-
elled self-reducer for System T, using the number of reduc-
tion steps as the amount of fuel. I initially tried to work di-
rectly with Gödel encodings of terms, but I found this diffi-
cult. Instead I used work by Kiselyov [14] and Longley and
Normann [16] to encode products, sums and finitary posi-
tive inductive types within System T. As these type encod-
ings are also complex, I used Idris 2 [5] as ameta language to
help construct the term.The final term is large; a condensed
version is 336 kibibytes. Compare this to the Idris program
generating it, which is 75 kibibytes split over several files.
To overcome size issues and the complexity of encoding

types within System T, I have promoted them to first-class
features in a new meta-language called Primrose. Primrose
corresponds to the simply-typed 𝜆-calculus extended with
products, sums and finitary positive inductive types. I present
its type system and a translation from Primrose into Sys-
tem T.Work on Primrose is ongoing, with the intent to write
the translation to System T as a Primrose program andwrite
a fuelled self-reducer. Combining these two programs will
allow for a new, hopefully simpler self-reduction algorithm
for System T.
Outline: in section 2 I formally define self-reducers and

fuelled self-reducers for strongly-typed languages. I intro-
duce the syntax and type system of Primrose in section 3. I

1

https://orcid.org/0009-0000-3401-8637
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

PEPM ’25, January 21, 2025, Denver, CO, USA Greg Brown

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴 Γ ⊢ 0 : nat

Γ ⊢ 𝑡 : nat
Γ ⊢ suc 𝑡 : nat

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑢 : 𝐴 → 𝐴 Γ ⊢ 𝑣 : nat
Γ ⊢ primrec 𝑡 𝑢 𝑣 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴 → 𝐵

Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑡 : 𝐴
Γ ⊢ 𝑓 𝑡 : 𝐵

Figure 1. Definition of System T

define a translation function from Primrose into System T in
section 3.1. In section 3.2 I describe my plans for the future
of Primrose. I conclude with a discussion on related work in
section 4.

Contributions:
• report about an ongoing implementation of the meta-
language Primrose for working with System T more
ergonomically.

• constructed an explicit fuelled self-reducer in SystemT.

2 Strongly-Typed Self-Reducers
Self-reducers are programs that manipuate embeddings of
programs. The details of how they function depend on the
details of the embedding. For a simply-typed language, one
needs to choose both a type representing embedded values
and a function converting programs to that type.
Definition 2.1. A language consists of:

• a set Ty of types;
• a type operation→: Ty×Ty → Ty for function types;
• a Ty-indexed set Tm (−) of terms of a given type;
• a term operation $: Tm (𝐴 → 𝐵)×Tm (𝐴) → Tm (𝐵)
for function applications;

• aTy-indexed reduction relation⇝𝐴⊆ Tm (𝐴)×Tm (𝐴);
• aTy-indexed partial functionnf𝐴 : Tm (𝐴) ⇀ Tm (𝐴)
specifying the normal form of a term, when it exists.

I write ⇝∗ as the transitive closure of ⇝.
I will elide the type annotations on⇝∗ and nf . I will also

write an application 𝑓 $ 𝑥 as justaposition 𝑓 𝑥 . When talk-
ing about multiple languages, I will use superscripts on Ty
and Tm to distinguish between the languages.
This definition of languages is compatible with untyped

languages, by taking Ty = {★} and ★→ ★≔ ★.
Example 2.2. System T is the language consisting of types
of the form Ty F nat | Ty → Ty. Members of Tm (𝐴) are
terms 𝑡 such that the judgement ⊢ 𝑡 : 𝐴 from fig. 1 holds.
Take⇝ to be beta-reduction, and nf to beta normal forms.

Languages are capable of embedding terms of another.
This is commonly called ‘quoting’ the term [2, 15, 8].
Definition 2.3. A quotation function of an object language
𝑂 into a meta language𝑀 consists of:

𝔤(𝑥) ≔ 20 · 3𝑥
𝔤(0) ≔ 21

𝔤(suc) ≔ 22

𝔤(rec 𝑧 𝑠 𝑛) ≔ 23 · 3𝔤(𝑧) · 5𝔤(𝑠) · 7𝔤(𝑛)
𝔤(𝜆𝑥 .𝑡) ≔ 24 · 3𝔤(𝑡)
𝔤(𝑓 𝑡) ≔ 25 · 3𝔤(𝑓) · 5𝔤(𝑡)

Figure 2. A Gödel encoding of System T terms, assuming
variables are using de Bruijn indices.

• a meta type 𝐸 ∈ Ty𝑀 of program codes;
• for all object types 𝐴 ∈ Ty𝑂 a function

⌜−⌝𝐴 : Tm𝑂 (𝐴) → Tm𝑀 (𝐸)

A self-quotation function is a quotation function where the
object and meta languages are equal.

Note that a quotation function need not be computable
nor injective. Also notice that not all meta terms of type 𝐸
need to represent well-typed object terms.

Example 2.4. Here are three self-quotation functions for
System T, choosing 𝐸 to be nat:

1. the constant function ⌜e⌝𝐴 ≔ 0;
2. the Gödel encoding ⌜e⌝𝐴 ≔ 𝔤(e);
3. theGödel encoding of normal forms ⌜e⌝𝐴 ≔ 𝔤(nf (e)).

The first of these functions forgets everything about the
term. The second uses the Gödel encoding, defined in fig. 2,
to represent the term as an abstract syntax tree. The third
forgets the original term, instead embedding its normal form.
Some choices of quotation functions are more useful than
others.

Definition 2.5. A reducer relative to quotation function ⌜−⌝
from 𝑂 to 𝑀 is an Ty𝑂 -indexed family of meta terms r𝐴 :
Tm𝑀 (𝐸 → 𝐸) such that for any object term e ∈ Tm𝑂 (𝐴)
the reduction

r𝐴 ⌜e⌝𝐴 ⇝∗ ⌜nf (e)⌝𝐴 (1)

holds whenever the normal form nf (e) exists.
A self-reducer is a reducer where the object language and

meta language are the same.

Notice that a reducer is a family of programs. This is im-
portant for typed object languages whose normal forms are
eta-long. The behaviour of a reducer is unspecified when
applied to object terms without a normal form. A common
design goal is to ensure that a reducer terminates for all ob-
ject terms.

Example 2.6. The identity function 𝜆𝑥 .𝑥 is a self-reducer
for quotation functions 1 and 3 of example 2.4 asnf (nf (e)) =
nf (e) for all terms e.

2

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

A Fuelled Self-Reducer for System T via Primrose (Short Paper) PEPM ’25, January 21, 2025, Denver, CO, USA

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

Bauer [2] proved theorem 1.1 regarding the non-existence
of self-reducers for System T. The proof relies on being able
to construct terms that compute:

• the Gödel encoding of a natural number;
• a natural number from its Gödel encoding;
• the encoding of applying two terms together.

From this one can construct a fixed point for every term
of type nat → nat. As the successor function has no fixed
point, this is a contradiction.

Adding fuel to a reducer can prevent encoding applica-
tions, circumventing this impossibility result.

Definition 2.7. A fuelled reducer for quotation function
⌜−⌝ from𝑂 to𝑀 and a fuel functions 𝐹𝐴 : Tm𝑂 (𝐴) → N is
anTy𝑂 -indexed family ofmeta terms r𝐴 : Tm𝑀 (nat → 𝐸 → 𝐸)
such that for any object term e ∈ Tm𝑂 (𝐴) the reductions

∀𝑘 ≥ 𝐹𝐴 (e).r𝐴 𝑘 ⌜e⌝𝐴 ⇝∗ ⌜nf (e)⌝𝐴 (2)

hold whenever the normal form nf (e) exists.
A fuelled self-reducer is a fuelled reducer where the ob-

ject language and meta language are the same.

Fuel is an additional parameter given to an iterative pro-
cess describing an upper bound on the number of steps to
reach the final value. Adding fuel overcomes the restrictions
of theorem 1.1. To adapt Bauer’s impossibility proof to a fu-
elled reducer, one must be able to calculate the fuel required
to reduce an application. As fuelled self-reducers exist for
System T, it suggests the fuel needed to reduce an applica-
tion cannot be computed.

The inequality in eq. (2) helps to prevent ‘cheating’. With-
out it, one could smuggle a complete computation through
the fuel function. For example, for the fuel function 𝐹𝐴 (e) ≔
𝔤(nf (e)), the program r 𝑘 𝑥 ≔ 𝑘 would satisfy this weaker
definition.

3 Primrose
Encoding complex types into SystemT results in large terms
that are impossible to read. I introduce a new language, Prim-
rose, to act as a new metalanguage for System T. By design,
any Primrose term can be compiled into a well-typed Sys-
tem T term.

Primrose is the simply-typed 𝜆-calculus extended with
sums, products and finitary positive inductive types. The
syntax is shown in fig. 6 and fig. 7 shows the typing rules.
Primrose has two typing judgements:

• 𝐴 finpos 𝑋 checks all uses of 𝑋 within 𝐴 are finitary
positive;

• Γ ⊢ 𝑡 : 𝐴 checks term 𝑡 at type 𝐴 under context Γ;
The finpos judgement is related to the encoding of induc-

tive types within System T. I will provide more commentary
when describing the translation of Primrose into System T
later. The other typing rules are standard.

let 𝑥 = 𝑒 in 𝑡 ⇝ 𝑡 [𝑥/𝑒]
(𝜆𝑥.𝑡) 𝑢 ⇝ 𝑡 [𝑥/𝑢]

⟨𝐿1 : 𝑡1, . . . , 𝐿𝑛 : 𝑡𝑛⟩.𝐿𝑖 ⇝ 𝑡𝑖

case 𝐿𝑖 𝑡 of
{𝐿1 𝑥1 ⇒ 𝑡1; . . . ;𝐿𝑛 𝑥𝑛 ⇒ 𝑡𝑛}

⇝ 𝑡𝑖 [𝑥𝑖/𝑡]

!(∼𝑡) ⇝ 𝑡

fold ∼𝑡 as 𝑥 by 𝑢 ⇝

𝑢 [𝑥/unroll (map (𝑦 ↦→ fold 𝑦 as 𝑥 by 𝑢) (roll 𝑡))]

Figure 3. Primrose reduction rules.Themap, roll, and unroll
functions are described later.

The reduction relation for Primrose terms is shown in
fig. 3. The most interesting case is fold. First, map is a meta-
function that performs the fold recursively on all appropri-
ate subterms of 𝑡 . This value is then substituted into the ac-
cumulator 𝑢. I will provide an inductive definition for map
later.

3.1 Translation into System T
By design, all Primrose types can be translated into Sys-
tem T types. I will use type encodings by Kiselyov [14] and
Longley and Normann [16] to perform the translation.
System T has only two type formers: nat and function ar-

rows. As nat is inhabited, all System T types are inhabited;
for function types, use a constant function returning an ar-
bitrary value. I will denote arbitrary inhabitants with the
constant arb.

This allows System T to express the untagged union of
any two types like the union construct in C. Given two types
𝐴 and 𝐵, the union type𝐴⊔𝐵 has four operations satisfying
two equations:

inl : 𝐴 → 𝐴 ⊔ 𝐵 inr : 𝐵 → 𝐴 ⊔ 𝐵
prl : 𝐴 ⊔ 𝐵 → 𝐴 prr : 𝐴 ⊔ 𝐵 → 𝐵
prl (inl 𝑥) =𝛽,𝜂 𝑥 prr (inr 𝑦) =𝛽,𝜂 𝑦

I give the full definitions of 𝐴 ⊔ 𝐵, inl and prl in fig. 4. The
definition proceeds by recursion on the types 𝐴 and 𝐵. inr
and prr are defined symmetrically.

Example 3.1. The union of types 𝐴0 and 𝐵0

𝐴0 ≔ (nat → nat) → nat → nat
𝐵0 = nat → nat

is the type 𝐴0 ⊔ 𝐵0 = (nat → nat) → nat → nat. The left
injection and projection are both identity functions. A func-
tion 𝑓 of type𝐵0 is right-injected to the function 𝜆𝑔, 𝑥 .𝑓 (𝑔 arbnat).
An encoding ℎ of type 𝐴0 ⊔ 𝐵0 is right-projected into the
function 𝜆𝑥 .ℎ (𝜆𝑦.𝑥) arbnat.

Union types are essential for defining a translation of Prim-
rose into System T. Another useful type are lists. A list of

3

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

PEPM ’25, January 21, 2025, Denver, CO, USA Greg Brown

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

nat ⊔ nat ≔ nat
(𝐴 → 𝐵) ⊔ nat ≔ 𝐴 → 𝐵 ⊔ nat
nat ⊔ (𝐴 → 𝐵) ≔ 𝐴 → nat ⊔ 𝐵

(𝐴 → 𝐵) ⊔ (𝐶 → 𝐷) ≔ 𝐴 ⊔𝐶 → 𝐵 ⊔ 𝐷

inlnat,nat ≔ 𝜆𝑛.𝑛

inl𝐴→𝐵,nat ≔ 𝜆𝑓 , 𝑥 .inl𝐵,nat (𝑓 𝑥)
inlnat,𝐴→𝐵 ≔ 𝜆𝑛, 𝑥 .inlnat,𝐵 𝑛

inl𝐴→𝐵,𝐶→𝐷 ≔ 𝜆𝑓 , 𝑥 .inl𝐵,𝐷 (𝑓 (prl𝐴,𝐶 𝑥))

prlnat,nat ≔ 𝜆𝑛.𝑛

prl𝐴→𝐵,nat ≔ 𝜆𝑓 , 𝑥 .prl𝐵,nat (𝑓 𝑥)
prlnat,𝐴→𝐵 ≔ 𝜆𝑓 .prlnat,𝐵 arb𝐴

prl𝐴→𝐵,𝐶→𝐷 ≔ 𝜆𝑓 , 𝑥 .prl𝐵,𝐷 (𝑓 (inl𝐴,𝐶 𝑥))

Figure 4. Encoding of union types in System T.

type 𝐴 is represented by a function from positions to val-
ues: 𝐴∗ ≔ nat → 𝐴. Item lookup is performed by calling
this function with the index to search. Constructing the list
is more involved, with the constructors nil and cons defined
as follows.

nil ≔ 𝜆𝑥 .arb
cons ≔ 𝜆𝑣, 𝑓 , 𝑖 .primrec 𝑣 (𝜆𝑥 .𝑓 (pred 𝑖)) 𝑖

The empty list contains arbitrary data at all positions.The
cons operation uses primrec to test whether to return the
head of the list or a value from the tail.

I will write statements of the form [𝑥 ;𝑦; 𝑧] as syntactic
sugar for lists.

For the remainder of this section, I will construct a pair
of functions translating closed types and open terms from
Primrose to System T, both called ⟦−⟧.
I use Kiselyov’s [14] encoding of product types to trans-

late Primrose products into System T types.

⟦⟨𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛⟩⟧ ≔

(
𝑛⊔
𝑖=1

⟦𝐴𝑖⟧
)∗

⟦⟨𝐿1 : 𝑡1, . . . , 𝐿𝑛 : 𝑡𝑛⟩⟧ ≔ [in1 ⟦𝑡1⟧, . . . , in𝑛 ⟦𝑡𝑛⟧]
⟦𝑒.𝐿𝑖⟧ ≔ pr𝑖 (⟦𝑒⟧ 𝑖)

Products are represented as a heterogeneous list. I use union
types so that each element is represented in a uniform way.
The tupling operation stores the components of the product
in a list, after injecting each component into the union. The
projection operation looks up the component from the list,
and then projects it to the correct type.

I will write𝐴×𝐵 for the product of two arbitrary SystemT
types, with tupling operation ⟨−,−⟩ and projections fst and
snd, defined similarly to above. I will also allow pattern-
matching expressions within System T, such as let ⟨𝑥,𝑦⟩ =
𝑝 in 𝑡 .

Kiselyov [14] also gives an encoding of sum types.

⟦{𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛}⟧ ≔ nat ×
𝑛⊔
𝑖=1

⟦𝐴𝑖⟧

⟦𝐿𝑖 𝑡⟧ ≔ ⟨𝑖, in𝑖 ⟦𝑡⟧⟩⟦
case 𝑒 of
{𝐿1 𝑥1 ⇒ 𝑡1; . . . 𝐿𝑛 𝑥𝑛 ⇒ 𝑡𝑛}

⟧
≔ let ⟨𝑖, 𝑣⟩ = ⟦𝑒⟧ in

[let 𝑥1 = pr1 𝑣 in⟦𝑡1⟧
; . . .
; let 𝑥𝑛 = pr𝑛 𝑣 in⟦𝑡𝑛⟧
] (pred 𝑖)

Sums are represented as tagged unions.The first component
of the pair identifies which case of the union the value occu-
pies. The second stores the value itself. The case expression
uses a list to compute the value of each branch.The tag then
selects the appropriate branch.
The final type constructor to translate into System T are

inductive types. Longley and Normann [16, prop 4.2.12] de-
scribes a general strategy for encoding finitary positive types
within System T. This is exactly the set of types that satisfy
finpos.

Definition 3.2. A finitary positive container type is a list
of pairs made of a Primrose type and a natural number.

Containers are a normal form for the inductive types that
Primrose can operate on. A container has a number of con-
structors, each consisting of an arbitrary type for data and
a finite number of children. One can fill a container type
𝐹 = (𝐴𝑖 , 𝑛𝑖)1≤𝑖≤𝑘 with a type 𝐵. We define this filling

𝐹 𝐵 ≔
𝑘∑
𝑖=1

𝐴𝑖 × 𝐵𝑛𝑖

Containers are endofunctors on types. I define the map
operation on a container as follows, where 𝑓 𝑘 : 𝐴𝑘 → 𝐵𝑘 is
the action of the (−)𝑘 functor.

map : (𝐴 → 𝐵) → 𝐹 𝐴 → 𝐹 𝐵

map 𝑓 𝑥 ≔ case 𝑥 of {𝐿𝑖 𝑝 ⇒ ⟨fst 𝑝, 𝑓 𝑛𝑖 (snd 𝑝)⟩}

I define a second utility function called getChildren. Given
a filled container, this empties the filling into a list, replac-
ing each filled value with its index into the list. The value
𝑛𝑖 is the number of filled values for case 𝑖 , and iota𝑘 is the
tuple 0, . . . , 𝑘 − 1.

getChildren : 𝐹 𝐴 → nat ×𝐴∗ × 𝐹 nat
getChildren 𝑥 ≔ case 𝑥 of {𝐿𝑖 𝑝 ⇒ ⟨𝑛𝑖 , snd 𝑝, ⟨fst 𝑝, iota𝑛𝑖 ⟩}

4

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

A Fuelled Self-Reducer for System T via Primrose (Short Paper) PEPM ’25, January 21, 2025, Denver, CO, USA

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

Definition 3.3. Two Primrose types𝐴 and𝐵 are isomorphic
when there are Primrose terms ⊢ 𝑓 : 𝐴 → 𝐵 and ⊢ 𝑓 −1 :
𝐵 → 𝐴 such that

(𝜆𝑥.𝑓 −1 (𝑓 𝑥)) =𝛽𝜂 (𝜆𝑥.𝑥)
(𝜆𝑦.𝑓 (𝑓 −1 𝑦)) =𝛽𝜂 (𝜆𝑦.𝑦)

Type isomorphisms describe when two types contain the
same amount of information. I use isomorphisms to convert
finite positive types into containers.

Lemma 3.4. Whenever𝐴 finpos𝑋 there exists a container𝐴
such that𝐴𝑋 is isomorphic to𝐴. Denote the forward direction
from 𝐴 𝑋 to 𝐴 as unroll and the reverse as roll.

This lemma is what defines the structure of finpos. The
type variable 𝑋 cannot appear on either side of a function
arrow, because there is no guarantee the type will be iso-
morphic to a container. Similarly 𝑋 cannot be used within
other inductive types, as the inductive type could mean that
a constructor can use 𝑋 a variable number of times.

Example 3.5. Consider the type of binary trees, where all
leaves and internal nodes are tagged with a natural.

𝑇 ≔ 𝜇𝑋 .⟨D : nat, S : {L : ⟨⟩, B : ⟨L : 𝑋, R : 𝑋 ⟩}⟩
This type has the corresponding container𝑇 ≔ [(nat, 0), (nat, 2)].
The first case corresponds to leaves, and the second case cor-
responds to branches.

Container types provide enough structure to use Longley
and Normann’s [16] encoding for finitary positive inductive
types.

⟦𝜇𝑋 .𝐴⟧ ≔ nat × nat × ⟦𝐴 nat⟧∗

⟦∼𝑡⟧ ≔ let ⟨𝑘, 𝑐𝑠, 𝑡 ′⟩ = getChildren (roll ⟦𝑡⟧) in
let offset = 𝜆𝑖, 𝑥 .1 + 𝑖 + 𝑘 ∗ 𝑥 in
⟨ 1 + fst (primrec
⟨0, 0⟩
(𝜆⟨𝑥, 𝑖⟩.⟨max 𝑥 (depth (𝑐𝑠 𝑖)), 1 + 𝑖⟩)
𝑘)

, 0
, cons (map (𝜆𝑖.offset 𝑖 (root (𝑐𝑠 𝑖))) 𝑡 ′)

(𝜆𝑛.
let ⟨𝑞, 𝑟 ⟩ = divmod 𝑛 𝑘 in
map (offset 𝑟) (heap (𝑐𝑠 𝑟) 𝑞))

⟩
⟦!𝑡⟧ ≔ let ⟨𝑑, 𝑟, ℎ⟩ = ⟦𝑡⟧ in

unroll (map (𝜆𝑖.⟨𝑑, 𝑖, ℎ⟩) (ℎ 𝑟))
⟦fold 𝑒 as 𝑥 by 𝑡⟧ ≔ let ⟨𝑑, 𝑟, ℎ⟩ = ⟦𝑒⟧ in

primrec
(𝜆𝑖.arb)
(𝜆𝑓 , 𝑖 .

let 𝑥 = unroll (map 𝑓 (ℎ 𝑖)) in
⟦𝑡⟧)

𝑑 𝑟

Inductive types are encoded as a triple. The last compo-
nent of the triple acts as a heap. Every entry stores a con-
structor, a value of that constructor’s data, and a pointer
for each of its children. By construction, the heap cannot be
cyclic, thus it stores a tree. The first component is an upper
bound on the depth of the tree.The second indicates the root
node of this tree.
The roll operation is most complex.The operation merges

the heaps of all the recursive terms together, and then adds
an extra entry for the new root. The heaps are merged to-
gether by striping; assuming 𝑘 children, the first child heap
occupies indices 1 + 𝑘 ∗ 𝑖 , the second 2 + 𝑘 ∗ 𝑖 and so on.

In detail, it finds the recursive components of the input
value using getChildren. It then defines a helper function
offset which calculates the new heap indices for child 𝑖 . The
depth of the returned tree is the maximum depth of all chil-
dren, plus one for the additional level of indirection. The
new root is at index 0 which is the front of the heap. The
root of the new heap updates the result of getChildren so
each pointer refers to the root of the child tree. The rest
of the heap uses divmod to calculate which child and what
heap entry to access—the remainder is the child and the quo-
tient the index. Applying offset to all pointers in that value
updates the pointers to access the new heap.
The unroll operation is straightforward thanks to storing

the root of the tree. For every pointer it takes a copy of the
initial tree and replaces the root with that pointer.
The fold operation works across the whole heap in paral-

lel. First an arbitrary map of values is created. Then for each
layer in the tree it replaces all the pointers into the heapwith
values from the last layer’s valuemap, and then it applies the
accumulator expression. Iterating on the depth stored with
the heap ensures that every layer has been reduced.

Example 3.6. Continuing example 3.5, we calculate
⟦𝑇⟧ = nat × nat × (nat → (nat × ⟨⟩) + (nat × ⟨nat, nat⟩))
Figure 5 contains both the diagram of a tree and a box-

and-pointer representation of its encoded value.

Trees stored with this encoding are restricted to a con-
stant number of children for each type of node. I believe
it possible to allow trees with nodes that can have a vari-
able but finite number of children.Thiswould require chang-
ing the definitions for container, map, getChildren, roll and
unroll.The details of this encoding have not been fullyworked
out. In the Primrose type system, allowing these branching
structures would amount to modifying the finpos condition
for inductive types. Instead of rejecting occurrences of the
variable inside of an inductive type, it would require occur-
rences to be finpos too.

3.2 Future Work
Work on Primrose is ongoing, and there aremany important
theoretical and practical issues to address. One problem is

5

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

PEPM ’25, January 21, 2025, Denver, CO, USA Greg Brown

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

1

2

3 4

5

(B, 1) (B, 2) (L, 3) (L, 4) (L, 5)

Figure 5. Representation of a tree (left) and its System T encoding (right)

proving that the translation into System T preserves reduc-
tion. Longley and Normann [16] only give a sketch of why
their encoding of inductive types works, whilt the reduction
rules for unions only hold when considering System T with
eta conversion for functions.

Another challenge is to convertmy existing SystemT self-
reducer into a Primrose program. As a dependently typed
language, Idris guarantees that my existing term is well-
typed. However, Idris also has polymorphism, allowing me
to reuse several definitions. As Primrose is only simply typed,
this could lead to a lot of duplicated code. Alternatively, I
could investigate extending Primrose with prenex polymor-
phism as in Standard ML.

A practical issue whilst working with Primrose is that
there is currently no interpreter, making testing programs
impossible. I have written a type checker for Primrose in
Idris, but inductive types interact poorlywith Idris’s require-
ment that all programs terminate. One potential workaround
I have is to compile Primrose into Scheme.

As a final test of the practicality of Primrose, I intend to
write a fuelled self-reducer. As Primrose embeds System T,
there is a Primrose program converting System T terms into
Primrose terms. The translation function also acts via struc-
tural induction, so in theory it may be possible to write this
in Primrose too. Composing these three programs, I can take
a System T term, convert it to Primrose, reduce it, and then
translate it back to System T. Thus I could have a second
self-reducer for System T. This could be compared with my
existing self-reducer.

4 Related Work
Self-reducers. Table 1 lists self-reducers for a number of
systems.They have different type systems and recursive power.
Whilst they use different quotation functions, each embeds
terms as some form of abstract syntax tree.

The results in the 80’s and early 90’s focus on establishing
self-reducers for practical languages [13, 10, 4, 15]. In par-
allel, Mogensen [18], and Berarducci and Böhm [3] worked
on self-reducers for the 𝜆-calculus; the first self-reducers for
languages with first-class functions.

There has recently been a series of papers on interpreters
and reducers for moreminimal strongly-typed languages by

Brown and Palsberg [8, 6, 9, 7]. They use a calculus dubbed
F𝜇𝑖𝜔 , consisting of System F with type-level functions, iso-
recursive types, and intensional type functions.The language
is Turing complete.
TypedRepresentation.Mydefinition of quotation func-

tion (definition 2.3) uses an untyped representation of terms.
All terms of the object language are embedded into the same
meta type 𝐸. It also allows for values representing ill-typed
terms, and possibly even values representing no term at all.
An alternative is typed representation. Instead of a single

meta type for program codes, there is a Ty𝑂 -indexed-family
𝐸 (−) : Ty𝑂 → Ty𝑀 of types for program codes. Using mul-
tiple types, one can enforce that all values of type 𝐸 (𝐴) rep-
resent object terms in Tm𝑂 (𝐴). This approach is used by
Brown and Palsberg [8, 6, 9, 7] to define their self-reducers
and self-evaluators.
Self-Evaluators. Both self-reducers and self-evaluators

are colloquially known as self-interpreters. Consider the def-
inition of a self-evaluator:

Definition 4.1. A self-evaluator relative to a quotation func-
tion ⌜−⌝ is a type-indexed family of programs u𝐴 : Tm (𝐸 → 𝐴)
such that for all terms e ∈ Tm (𝐴)

u𝐴 ⌜e⌝ ⇝∗ nf (e)
A self-evaluator (u for unquote) takes embeddings of terms

and behaves the same as the original term.Many self-reducers
implement self-evaluators [15, 18, 12, 7].
Many programming languages also contain self-evaluators

as primitive operations. This includes JavaScript, Scheme
and Python among others.
Conversion for dependent type theories.Currentwork

on dependent type theory asks whether conversion check-
ing is computable within a dependently-typed language [1].
Conversion checking often involves reducing terms to head-
normal form; this can be extended to reduce terms to beta-
normal form. Brown and Palsberg [8] constructed a self-
reducer for System U, an inconsistent dependently-typed
calculus. It is an open problem if a consistent dependently-
typed language has a self-reducer.

6

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

A Fuelled Self-Reducer for System T via Primrose (Short Paper) PEPM ’25, January 21, 2025, Denver, CO, USA

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

References
[1] A. Abel, J. Öhman, and A. Vezzosi. 2018. Decidability of conversion

for type theory in type theory. Proc. ACM Program. Lang., 2, POPL,
23:1–23:29. doi: 10.1145/3158111.

[2] A. Bauer. On self-interpreters for SystemT and other typed𝜆-calculi.
Draft, (Jan. 2016). Retrieved Sept. 25, 2024 from https://math.andre
j.com/wp-content/uploads/2016/01/self-interpreter-for-T.pdf.

[3] A. Berarducci and C. Böhm. 1992. A self-interpreter of lambda calcu-
lus having a normal form. In Computer Science Logic, 6th Workshop,
CSL ’92, SanMiniato, Italy, September 28 - October 2, 1992, Selected Pa-
pers (Lecture Notes in Computer Science). E. Börger, G. Jäger, H. K.
Büning, S. Martini, and M. M. Richter, (Eds.) Vol. 702. Springer, 85–
99. doi: 10.1007/3-540-56992-8_7.

[4] A. Bondorf. 1989. A self-applicable partial evaluator for term rewrit-
ing systems. In TAPSOFT’89: Proceedings of the International Joint
Conference onTheory and Practice of Software Development, Barcelona,
Spain, March 13-17, 1989, Volume 2: Advanced Seminar on Founda-
tions of Innovative Software Development II and Colloquium on Cur-
rent Issues in Programming Languages (CCIPL) (Lecture Notes in
Computer Science). J. Díaz and F. Orejas, (Eds.) Vol. 352. Springer,
81–95. doi: 10.1007/3-540-50940-2_29.

[5] E. C. Brady. 2021. Idris 2: quantitative type theory in practice. In 35th
European Conference on Object-Oriented Programming, ECOOP 2021,
July 11-17, 2021, Aarhus, Denmark (Virtual Conference) (LIPIcs). A.
Møller and M. Sridharan, (Eds.) Vol. 194. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 9:1–9:26. doi: 10.4230/LIPICS.ECOOP.202
1.9.

[6] M. Brown and J. Palsberg. 2016. Breaking through the normalization
barrier: a self-interpreter for F-omega. In Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016. R. Bodík and R. Majumdar, (Eds.) ACM, 5–17. doi: 10.1145/28
37614.2837623.

[7] M. Brown and J. Palsberg. 2018. Jones-optimal partial evaluation
by specialization-safe normalization. Proc. ACM Program. Lang., 2,
POPL, 14:1–14:28. doi: 10.1145/3158102.

[8] M. Brown and J. Palsberg. 2015. Self-representation in Girard’s Sys-
tem U. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015,Mum-
bai, India, January 15-17, 2015. S. K. Rajamani and D. Walker, (Eds.)
ACM, 471–484. doi: 10.1145/2676726.2676988.

[9] M. Brown and J. Palsberg. 2017. Typed self-evaluation via inten-
sional type functions. In Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017. G. Castagna and A. D. Gordon, (Eds.)
ACM, 415–428. doi: 10.1145/3009837.3009853.

[10] D. A. Fuller and S. Abramsky. 1988. Mixed computation of Prolog
programs. New Gener. Comput., 6, 2&3, 119–141. doi: 10.1007/BF03
037134.

[11] C. B. Jay and J. Palsberg. 2011. Typed self-interpretation by pattern
matching. In Proceeding of the 16th ACM SIGPLAN international con-
ference on Functional Programming, ICFP 2011, Tokyo, Japan, Septem-
ber 19-21, 2011. M. M. T. Chakravarty, Z. Hu, and O. Danvy, (Eds.)
ACM, 247–258. doi: 10.1145/2034773.2034808.

[12] N. D. Jones, C. K. Gomard, and P. Sestoft. 1993. Partial evaluation
and automatic program generation. Prentice Hall international series
in computer science. Prentice Hall. isbn: 978-0-13-020249-9.

[13] N. D. Jones, P. Sestoft, and H. Søndergaard. 1985. An Experiment in
Partial Evaluation: The Generation of a Compiler Generator. Tech.
rep. 1. University of Copenhagen.

[14] O. Kiselyov. 2022. Simply-typed encodings: PCF considered as un-
expectedly expressive programming language. Retrieved Sept. 16,
2024 from https://www.okmij.org/ftp/Computation/simple-encodi
ngs.html.

[15] J. Launchbury. 1991. A strongly-typed self-applicable partial evalu-
ator. In Functional Programming Languages and Computer Architec-
ture, 5th ACM Conference, Cambridge, MA, USA, August 26-30, 1991,
Proceedings (Lecture Notes in Computer Science). J. Hughes, (Ed.)
Vol. 523. Springer, 145–164. doi: 10.1007/3540543961_8.

[16] J. Longley and D. Normann. 2015. Higher-Order Computability.The-
ory andApplications of Computability. Springer. isbn: 978-3-662-47991-
9. doi: 10.1007/978-3-662-47992-6.

[17] H.Makholm. 2000. On Jones-optimal specialization for strongly typed
languages. In Semantics, Applications, and Implementation of Pro-
gramGeneration, InternationalWorkshop SAIG 2000,Montreal, Canada,
September 20, 2000, Proceedings (LectureNotes in Computer Science).
W. Taha, (Ed.) Vol. 1924. Springer, 129–148. doi: 10.1007/3-540-453
50-4_11.

[18] T. Æ. Mogensen. 1992. Efficient self-interpretations in lambda cal-
culus. JFP, 2, 3, 345–363. doi: 10.1017/S0956796800000423.

[19] M. Naylor. 2008. Evaluating Haskell in Haskell. The Monad.Reader,
10, 25–33. Retrieved Oct. 1, 2024 from http://www.haskell.org/wiki
upload/0/0a/TMR-Issue10.pdf.

A Additional Figures

𝐴, 𝐵 F types
𝑋 variables
| 𝐴 → 𝐵 functions
| ⟨𝐿 : 𝐴, . . . , 𝐿 : 𝐴⟩ products
| {𝐿 : 𝐴, . . . , 𝐿 : 𝐴} sums
| 𝜇𝑋 .𝐴 inductive types

𝑒, 𝑓 , 𝑡, 𝑢 F terms
𝑥 variables
| let 𝑥 = 𝑒 in 𝑡 let bindings
| 𝜆𝑥.𝑡 abstraction
| 𝑓 𝑡 application
| ⟨𝐿 : 𝑡, . . . , 𝐿 : 𝑡⟩ tuples
| 𝑒.𝐿 projection
| 𝐿 𝑡 injection

|
case 𝑒 of
{𝐿 𝑥 ⇒ 𝑡 ; . . . ;𝐿 𝑥 ⇒ 𝑡} case splitting

| ∼𝑡 rolling
| !𝑒 unrolling
| fold 𝑒 as 𝑥 by 𝑡 folding

Figure 6. Syntax of Primrose

7

https://doi.org/10.1145/3158111
https://math.andrej.com/wp-content/uploads/2016/01/self-interpreter-for-T.pdf
https://math.andrej.com/wp-content/uploads/2016/01/self-interpreter-for-T.pdf
https://doi.org/10.1007/3-540-56992-8_7
https://doi.org/10.1007/3-540-50940-2_29
https://doi.org/10.4230/LIPICS.ECOOP.2021.9
https://doi.org/10.4230/LIPICS.ECOOP.2021.9
https://doi.org/10.1145/2837614.2837623
https://doi.org/10.1145/2837614.2837623
https://doi.org/10.1145/3158102
https://doi.org/10.1145/2676726.2676988
https://doi.org/10.1145/3009837.3009853
https://doi.org/10.1007/BF03037134
https://doi.org/10.1007/BF03037134
https://doi.org/10.1145/2034773.2034808
https://www.okmij.org/ftp/Computation/simple-encodings.html
https://www.okmij.org/ftp/Computation/simple-encodings.html
https://doi.org/10.1007/3540543961_8
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1007/3-540-45350-4_11
https://doi.org/10.1007/3-540-45350-4_11
https://doi.org/10.1017/S0956796800000423
http://www.haskell.org/wikiupload/0/0a/TMR-Issue10.pdf
http://www.haskell.org/wikiupload/0/0a/TMR-Issue10.pdf

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

PEPM ’25, January 21, 2025, Denver, CO, USA Greg Brown

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

𝑋 finpos 𝑋
𝑋 ∉ FV(𝐴) 𝑋 ∉ FV(𝐵)

𝐴 → 𝐵 finpos 𝑋
𝐴𝑖 finpos 𝑋

⟨𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛⟩ finpos 𝑋
𝐴𝑖 finpos 𝑋

{𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛} finpos 𝑋
𝑋 ∉ FV(𝐴)

𝜇𝑌 .𝐴 finpos 𝑋

𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ 𝜆𝑥.𝑡 : 𝐴 → 𝐵

Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑡 : 𝐴
Γ ⊢ 𝑓 𝑡 : 𝐵

Γ ⊢ 𝑒 : 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ let 𝑥 = 𝑒 in 𝑡 : 𝐵

Γ ⊢ 𝑒 : ⟨𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛⟩
Γ ⊢ 𝑒.𝐿𝑖 : 𝐴𝑖

Γ ⊢ 𝑡𝑖 : 𝐴𝑖

Γ ⊢ ⟨𝐿1 : 𝑡1, . . . , 𝐿𝑛 : 𝑡𝑛⟩ : ⟨𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛⟩

Γ ⊢ 𝑡 : 𝐴𝑖

Γ ⊢ 𝐿𝑖 𝑡 : {𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛}
Γ ⊢ 𝑒 : {𝐿1 : 𝐴1, . . . , 𝐿𝑛 : 𝐴𝑛} Γ, 𝑥𝑖 : 𝐴𝑖 ⊢ 𝑡𝑖 : 𝐵
Γ ⊢ case 𝑒 of {𝐿1 𝑥1 ⇒ 𝑡1; . . . ;𝐿𝑛 𝑥𝑛 ⇒ 𝑡𝑛} : 𝐵

Γ ⊢ 𝑡 : 𝐴[𝑋/𝜇𝑋 .𝐴] 𝐴 finpos 𝑋
Γ ⊢ ∼𝑡 : 𝜇𝑋 .𝐴

Γ ⊢ 𝑒 : 𝜇𝑋 .𝐴 𝐴 finpos 𝑋
Γ ⊢ !𝑒 : 𝐴[𝑋/𝜇𝑋 .𝐴]

Γ ⊢ 𝑒 : 𝜇𝑋 .𝐴 Γ, 𝑥 : 𝐴[𝑋/𝐵] ⊢ 𝑡 : 𝐵 𝐴 finpos 𝑋
Γ ⊢ fold 𝑒 as 𝑥 by 𝑡 : 𝐵

Figure 7. Typing rules of Primrose

Table 1. A taxonomy for self-reducers

System Year Type Complexity Functions Recursive Power Fuelled
Jones et al. [13] 1985 Untyped Second Class General No
Fuller and Abramsky [10] 1988 Untyped Second Class General No
Bondorf [4] 1989 Untyped Second Class General No
Launchbury [15] 1991 Simple Second Class General No
Mogensen [18] 1992 Untyped First Class General No
Berarducci and Böhm [3] 1992 Untyped First Class General No
Makholm [17] 2000 Simple Second Class General No
Naylor [19] 2008 Polymorphic First Class General No
Jay and Palsberg [11] 2011 Polymorphic First Class General No
Brown and Palsberg [9] 2017 Polymorphic First Class General No
Brown and Palsberg [7] 2018 Polymorphic First Class General No
This work 2024 Simple First Class Bounded Yes

8

	Abstract
	1 Introduction
	2 Strongly-Typed Self-Reducers
	3 Primrose
	3.1 Translation into System T
	3.2 Future Work

	4 Related Work
	A Additional Figures

